湖南2025专升本高等数学考试大纲
湖南2025专升本高等数学考试大纲指出考试内容涵盖函数、极限、连续、微分学、积分学、微分方程、向量代数与空间解析几何、无穷级数等方面。参考2024年考试纲要。
湖南2025专升本高等数学考试大纲
I.考试内容与要求
本科目考试内容涵盖函数、极限、连续、微分学、积分学、微分方程、向量代数与空间解析几何、无穷级数等方面,主要考查考生对基本知识和基本方法的理解、掌握程度,突出考查考生的抽象概括能力、运算求解能力、推理论证能力、空间想象能力,以及综合运用数学知识分析和解决简单实际问题的能力。
一、函数与极限
1.理解函数的概念,会求函数的定义域、表达式及函数值,会根据实际问题建立变量间的函数关系;掌握函数的有界性、单调性、周期性和奇偶性;了解反函数、分段函数、复合函数的概念;掌握函数的四则运算与复合运算;了解初等函数的概念,掌握基本初等函数的性质及其图象。
2.了解数列极限和函数极限(包括左极限和右极限)的概念;掌握函数极限存在与左极限、右极限存在之间的关系;了解数列极限和函数极限的性质,了解数列极限和函数极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握数列极限和函数极限的四则运算法则及两个重要极限;了解无穷小、无穷大的概念,掌握其性质,以及无穷小与无穷大的关系;会比较无穷小的阶(高阶、低阶、同阶和等价),会用等价无穷小求极限。
3.了解函数连续(包括左连续和右连续)的概念,掌握函数连续与左连续、右连续之间的关系;会求函数的间断点并判断其类型;掌握连续函数的四则运算和复合运算;理解初等函数在其定义区间内的连续性,并会利用连续性求极限;掌握闭区间上连续函数的性质,并会应用这些性质解决相关问题。
二、导数与微分
1.理解导数的概念和几何意义,会用定义求函数的导数。
2.会求平面曲线的切线方程和法线方程。
3.了解函数的可导性与连续性之间的关系;掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。
4.掌握隐函数求导法、对数求导法;掌握参数方程所确定的函数的求导方法。
5.了解高阶导数的概念,会求简单函数的高阶导数。
6.了解微分的概念,理解导数与微分的关系,会求函数的微分。
三、微分中值定理与导数的应用
1.了解罗尔定理、拉格朗日中值定理。
2.掌握洛必达法则,会用洛必达法则求未定式的极限。
3.了解函数极值的概念;会判断函数的单调性,并能用单调性证明不等式;会求函数极值和最值;会判断曲线的凹凸性,会求曲线的拐点以及水平渐近线和垂直渐近线。
四、不定积分
1.理解原函数与不定积分的概念,了解原函数存在定理;掌握不定积分的性质和基本积分公式。
2.掌握不定积分的换元法和分部积分法。
五、定积分及其应用
1.了解定积分的概念、几何意义及可积的条件;掌握定积分的性质。
2.理解积分上限函数,会求其导数;掌握牛顿-莱布尼茨公式。
3.掌握定积分的换元积分法与分部积分法。
4.了解定积分的元素法,会用定积分计算平面图形的面积和旋转体的体积。
Ⅱ.考试形式与试卷结构
完整内容请下载附件查看↓↓